I am trying to solve a system of 7 equations and 7 unknowns given a set of assuptions. I am only interested in obtaining V3 as a function of the exogenous parameters. I am using the following code: Reduce[V3 == (-12 s + 4 d V1 - 3 d l V1 + 4 d V2 - 3 d l V2 + 3 d l V4 + 2 d l V5 + 2 d l V6 + 2 d l V7 + 12 w1 + 12 w4)/( 12 - 4 d + 3 d l) && V2 == (-12 s + 4 d V1 - 3 d l V1 + 4 d V3 - 3 d l V3 + 3 d l V4 + 2 d l V5 + 2 d l V6 + 2 d l V7 + 12 w1 + 12 w3)/( 12 - 4 d + 3 d l) && V1 == (-12 s + 4 d V2 - 3 d l V2 + 4 d V3 - 3 d l V3 + 3 d l V4 + 2 d l V5 + 2 d l V6 + 2 d l V7 + 12 w1 + 12 w2)/( 12 - 4 d + 3 d l) && V4 == (12 s + d l V1 + d l V2 + d l V3 + 2 d l V5 + 2 d l V6 + 2 d l V7)/(3 (4 - 4 d + 3 d l)) && V5 == (-12 b + d l V1 + d l V2 + d l V3 + 3 d l V4 + 4 d V6 - 2 d l V6 + 4 d V7 - 2 d l V7 + 12 w2)/(2 (6 - 2 d + d l)) && V6 == (-12 b + d l V1 + d l V2 + d l V3 + 3 d l V4 + 4 d V5 - 2 d l V5 + 4 d V7 - 2 d l V7 + 12 w3)/(2 (6 - 2 d + d l)) && V7 == (-12 b + d l V1 + d l V2 + d l V3 + 3 d l V4 + 4 d V5 - 2 d l V5 + 4 d V6 - 2 d l V6 + 12 w4)/(2 (6 - 2 d + d l)) && w1 > s > w2 > w3 > w4 > b > 0 && w1 + w2 + w3 + w4 == 4 s && 0 < d < 1 && 0 < l < 1, {V3, V2, V1, V4, V5, V6, V7, s}] I solved similar systems using this method and I also tried to use Solve instead of Reduce without success. However, Mathematica does not return me anything in this case. Does anyone know a different way to solve this problem? Thanks in advance. Login To add answer/comment