1. This site uses cookies. By continuing to use this site, you are agreeing to our use of cookies. Learn More.

How to integrate$\int_0^1 \frac{\ln x}{x-1}dx$ without power series expansion

Discussion in 'Mathematics' started by student, Aug 2, 2020 at 2:25 AM.

  1. student

    student Guest

    I happen to watch the video here, which gives a solution to the definite integral below using the power series approach. Then answer is $\frac{\pi^2}{6}$, given by:

    $$\int_0^1 \frac{\ln x}{x-1}dx=\int_{-1}^0 \frac{\ln(1+u)}{u}du=\sum_{n=0}^{\infty}\frac{1}{(n+1)^2}=\frac{\pi^2}{6},$$

    where the power seires expansion of the function $\ln(1+u)$ is used.

    I tried for some time, but could not find another approach. Does anyone know any alternative methods to evaluate above definite integral without using the infinite series expansion?

    Any comments or ideas are really appreciated.

    Login To add answer/comment

Share This Page